T-cell tolerance for variability in an HLA class I-presented influenza A virus epitope.
نویسندگان
چکیده
To escape immune recognition, viruses acquire amino acid substitutions in class I human leukocyte antigen (HLA)-presented cytotoxic T-lymphocyte (CTL) epitopes. Such viral escape mutations may (i) prevent peptide processing, (ii) diminish class I HLA binding, or (iii) alter T-cell recognition. Because residues 418 to 426 of the hypervariable influenza A virus nucleoprotein (NP(418-426)) epitope are consistently bound by class I HLA and presented to CTL, we assessed the impact that intraepitope sequence variability has upon T-cell recognition. CTL elicited by intranasal influenza virus infection were tested for their cross-recognition of 20 natural NP(418-426) epitope variants. Six of the variant epitopes, of both H1N1 and H3N2 origin, were cross-recognized by CTL while the remaining NP(418-426) epitope variants escaped targeting. A pattern emerged whereby variability at position 5 (P5) within the epitope reduced T-cell recognition, changes at P4 or P6 enabled CTL escape, and a mutation at P8 enhanced T-cell recognition. These data demonstrate that substitutions at P4 and/or P6 facilitate influenza virus escape from T-cell recognition and provide a model for the number, nature, and location of viral mutations that influence T-cell cross-recognition.
منابع مشابه
Identification of Mycobacterium tuberculosis CTL Epitopes Restricted by HLA-A*0201 in HHD Mice
CD8+ T cells are thought to play an important role in protective immunity to tuberculosis. The major histocompatibility complex class I subtype HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A*0201 transgenic, H-2Db/mouse beta2-microglobulin double-knockout mice (HHD) which express human HLA-A*0201 but no mouse class I, was shown t...
متن کاملVaccine Design for H5N1 Based on B- and T-cell Epitope Predictions
From 2003 to 2013, Indonesia had the highest number of avian influenza A cases in humans, with 192 cases and 160 fatalities. Avian influenza is caused by influenza virus type A, such as subtype H5N1. This virus has two glycoproteins: hemagglutinin and neuraminidase, which will become the primary target to be neutralized by vaccine. Vaccine is the most effective immunologic intervention. In this...
متن کاملIn silico design a multivalent epitope vaccine against SARS-CoV-2 for Iranian populations
Background: Due to high genetic variation in human leukocyte antigen )HLA( alleles, epitope-based vaccines don’t show equal efficacy in different human populations. therefore, we proposed a multi-epitope vaccine against SARS-CoV-2 for Iranian populations. Materials and Methods: For this purpose, the proteins without allergenicity and high antigenicity as well as conservancy level from SARS-CoV...
متن کاملRecognition of influenza virus epitope variants by human CTL
Recently, an HLA-B*3501-restricted cytotoxic T-lymphocytes (CTL) epitope in the nucleoprotein (NP418–426) of influenza A viruses was identified, which exhibited a high degree of variability. In the present study, the recognition of epitope variants by human cytotoxic Tlymphocytes (CTL) was investigated. Human CD8+ CTL clones were specific for NP418–426 epitope variants within one subtype of inf...
متن کاملA broad cytotoxic T lymphocyte response to influenza type B virus presented by multiple HLA molecules.
The HLA restriction and epitope specificity of cytotoxic T lymphocytes (CTL) involved in recovery from influenza type B infection have not been extensively characterized. Here lymphocytes obtained from a healthy individual contained virus-specific CTL restricted by class I HLA molecules, HLA-A1, A2, B7 and B8, and the class II HLA molecules, HLA-DR1 and DR3. Four conserved viral epitopes were p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 83 18 شماره
صفحات -
تاریخ انتشار 2009